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LWE AND DH



ON THE ONE HAND, ON THE OTHER HAND

Bottom of the Stack: Top of the Stack:
- Kyber (KEM) - FHE [Gen09; BGV12; CGGI20; GSW13]
- Dilithium (Signature) - O [GGHRSW13; BDGM20]

- Falcon (Signature) - FE [SWO05; BSW11]



SOMEWHAT EFFICIENT

RSA 2048 Kyber-768
Key generation ~ 130,000,000 cycles Key generation = 38,000 Cyc[es
Encapsulation ~ 20,000 cycles Encapsulation = 49,000 cycles
Decapsulation ~ 2,700,000 cycles Decapsulation = 39,000 cycles
Ciphertext 256 bytes Ciphertext 1,088 bytes
Public key 256 bytes Public key 1,184 bytes
Curve25519

Key generation = 60,000 cycles
Key agreement = 160,000 cycles

Public key 32 bytes
Key Share 32 bytes

https://eprint.iacr.org/2015/943


https://bench.cr.yp.to/results-kem.html
https://eprint.iacr.org/2015/943
https://bench.cr.yp.to/results-kem.html

THE LEARNING WITH ERRORS PROBLEM (LWE)

Given (A,c) withc e Zg, A€ Zg*", s € Zj and small e € Z" is
~ n =
c | = A x| s |+| e

orc<«su (Zg’)



Co
G
G
G
(o
Cs
Co
G

ce
Performan

)
O(

)

O( ’

Qo,0
1,0
az.o
as.o
Qg0
0s0
Je,0
az.0

)

Qo
Qs 1
Az
as 1
Qs
Qs 1
Q6,1
azq

Qo2
ai2
azn
4z
Qs 2
as
Qe,2
az2

Qo3
a3
az3
as;3
043
Qs 3
Ue,3
az3

Qo4
(WA
Az,
3.4
Qg4
Qs 4
Q6,4
az.4

do,s
ais
a5
ass
Qs 5
Qs 5
Qe 5
azs

do,e
1.6
az6
a3
Qs
Q56
Q6.6
476

)

Qo7
as7
a7
as;7
g7
as 7
Qe.7
azz

So
S
52
S3
Sy
Ss
Se
S7

€o
€1
€2
€3
ey
€s
€6
€7




RING-LWE/POLYNOMIAL-LWE
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Performance (n is a power of two)
Storage: O(n); Computation O(nlogn)



RING-LWE/POLYNOMIAL-LWE

n—1 n—1 n—1 8
Sa X =D aX | (D si x|+ e X mod X" +1
i=0 i=0 i=0 i=0

c(X) = a(X) - s(X) + e(X) mod ¢(X)

We write R = Z[X]/¢(X) and Rq = Zq[X]/p(X).

Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient Public Key Encryption Based on Ideal
Lattices. In: ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. LNCS. Springer, Berlin, Heidelberg, Dec. 2009,
pp. 617-635. DOI: 10.1007/978-3-642-10366-7_36

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over Rings. In:
EUROCRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS. Springer, Berlin, Heidelberg, 2010, pp. 1-23. DOI:
10.1007/978-3-642-13190-5_1


https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-13190-5_1

CONVENTION

- | am going to use the Ring-LWE formulation

¢i(X) = ai(X) - s(X) + ei(X)
Thus, each sample corresponds to “n LWE samples”
-l will suppress the “(X)" in “a(X)" etc.

- I will assume s is “small” and that the product of two “small” things is “small”.
- | will write e; to emphasise that e; is small.

TL;DR: | will write



DH TO RING-LWE DICTIONARY

DH Land Ring-LWE Land
g a
g* a-s+e

g-g¥ =gt (G-S—i—eu)—k(a-t—i—e\):a-(s+t)+e/

(g9 =(g)® (a-s+e)-t=(a-s-t+e-t)
~a-s-t=(a-t4+e)-s

9°9®) (a,a-s+e,a-t+d,a-s-t+e)
~c (9,9% 9% u) ~c(a,a-s+e, a-t+d, u)




ELGAMAL & LPR10

ElGamal

KeyGen h =g°
Encrypt do, di = (g", m-h") for some random v
Decrypt di/dy =m-(g°)"/(g")y =m

[LPR10]

KeyGen c=a-s+e
Encrypt do, dy=v-a+¢, V'C+e//+L%J .m
Decrypt

E-(ch—do-s)-‘ - E.(v.(a-s+e)+e”+E’J-m—(v-a+e/)-s)w

[Eeveslglime 9] -m



FOLLOW THE BLUEPRINT



VERIFIABLE OBLIVIOUS PRFs

Client Functionality Server

(= F;;(m)




EXAMPLE APPLICATIONS: PRIVACY PASS

Problem: Idea:
- Tor users are having a hard time on Cloudflare - Solve CAPTCHA
protected sites - Evaluate a VOPRF on a bunch
- They're constantly asked to solve CAPTCHAS to of random points to produce
prove that they're not bots tokens Fe(x;)
- Want a privacy-preserving way of running reverse - Redeem token by sending
Turing test once and re-use later (i, Fr(Xi))

Alex Davidson, lan Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy Pass: Bypassing
Internet Challenges Anonymously. In: PoPETs 2018.3 (July 2018), pp. 164-180. DOI: 10.1515/popets-2018-0026


https://doi.org/10.1515/popets-2018-0026

DH-BASED OPRF

Client Server
Cx = H(X) gr
dx = Cf7 c= gk
de/c" = H(x)"
dx/c" = ci/c" = (H(x) - ") /(g")" = Hx)*



“JusT TAKE LOGS”

Client Server

& =HX)+a-r+e

dy =cx-kR+e',c:=a-kR+e"

17 -



THE TROUBLE

Trapdoor Friendly It is not safe to output ¢y - k + e for some arbitrary ¢y
glosses over e - k+ e’ —e” . which depends on k

"is not =, how do we arrive at the same value?

Noise Leakage
Noise Growth “~"



TRAPDOOR FRIENDLY




THE PROBLEM

?

The server has to output ¢4 - k + ¢’ for some ¢x = H(x) + a - r + e. This may not be safe.



POINT VALIDATION

Validation of Elliptic Curve Public Keys
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Abstract. We present practical and realistic attacks on some standard-
ized elliptic curve key establishment and public-key encryption protocols
that are cffe

tive if the receiver of an elliptic curve point does not check

that the point lies on the appropriate elliptic curve. The attacks combine
ideas from the small subgroup attack of Lim and Lee, and the differen-
tial fault attack of Bichl, Meyer and Miiller. Although the ideas behind
the attacks are quite elementary, and there are simple countermeasures
known, the attacks can have drastic consequences if these countermea-
sures are not taken by implementors of the protocols. We illustrate the
effectiveness of such attacks on a key agreement protocol recently pro-
posed for the IEEE 802,15 Wireless Personal Area Network (WPAN)
standard.




POINT VALIDATION
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Abstract. This work provides a systematic analysis of primality testi

under adversarial
conditions, where the numbers being tested for primality are not generated randomly, but
instead provided by a possibly malicious party. Such a situation can arise in sccure messaging
protocols where a server su

iffie-Hellman parameters to the peers, or in a secure

communications protocol like TLS where a developer can insert such a number to be able to
ater passively spy on client-server data. We study a broad range of cryptographic libraries
and assess their performance in this adverss
are able to construct 2048-bit composites t

al setting. As examples of our findings, we

e declared prime with probability 1/16 by

SL’s primality testing in its default configuration; the advertised performance is 2
We can also construct 1024-bit composites that always pass the primality testing routine
in GNU GMP when configured with the recommended minimum number of rounds. And
for a number of libraries (Cryptlib, LibTomCrypt, JavaScript Big Number, WolfSSL), we
can construct composites that always pass the supplied primality tests. We explore the
implications of these security failures in applications, focusing on the construction of malicious
Diffie-Hellman parameters. We show that, unless careful primality testing is performed, an
adversary can supply parameters (p, g, g) which on the surface look secure, but where the
discrete logarithm problem in the subgroup of order g generated by g is casy. We close by
making recommendations for users and developers. In particular, we promote the Baillie-PSW
primality test which is both efficient and conjectured to be robust even in the adversarial
setting for numbers up to a few thousand bits.
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However, (likely) no “point validation’
for LWE by the NTRU assumption
[HPS96]:

f,9+$R* :h=f/g ~c U(Rq)

Attack?:

1. Sample f, g +% R? and set A := [/q]
2. Submita==A-f/g
3. Receive c :=a-k+ e and compute

9-(A-f/g-k+e)
A-f-R+g-e
=g-emod A

g-c

%assuming f, g

, k, e are sufficiently small



WORKAROUND

- The client proves in zero-knowledge that ¢4 is well-formed: ¢x .= H(x) +a-r+e¢
- This means the client needs to prove the evaluation of H(x)
- This is sound, we do not need to treat H(x) as a Random Oracle

- This is expensive in terms of bandwidth and computation cost

- [ADDS21]: ~ 128GB per evaluation using [YAZXYW19]
- [AG24]: ~ 63kB per evaluation using [BS23]

This NTRU “attack” can be used constructively to make proof systems online extractable
(e.g. [ADDG24])



NOISE LEAKAGE




THE PROBLEM

The client learns

+e —e
where it chooses e and
The Attack
Write a := (e, —r) and s := (k, e”), then we can rewrite
+e —e.
as a-s+ e” which is essentially an instance of “LWE without modular reduction”

[BDEFT18] which is easy.

"The word “essentially” does a lot of work here. That is, this is a simplification because changes in each invocation and the
attacks from [BDEFT18] do not apply as is.



SOLUTIONS

le'll = A<® - [le - k —e” - r|| [ADDS21]
le’ll > poly(A) - VQ- lle - k—e” - ]| [AG24]

- Qis the number of queries
- must play a search game instead of a distinguishing game (use ROM)

le’ll > poly(A) - V@ - fle - k —e” - r|| [ESTX24]
- similar to Hint-(M)LWE, but w/o reduction from (M)LWE
Cost
Since we require g > ||¢’|| we have that g/||e|| - the “signal to noise ratio” of the

underlying RLWE samples - is quite big. A big signal to noise ratio makes decoding - i.e.
solving LWE — easier. This requires us to use larger secret dimensions n to compensate.
Bandwidth cost is essentially nlog q.



NOISE GROWTH




THE PROBLEM



ROUNDING

[SIEe]



SOLUTION ATTEMPT

Make g > poly()) such that the red area is
negligibly small.

w
=g
_|_

q
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SOLUTION ATTEMPT

Make g > poly()) such that the red area is
negligibly small.

L+
Malicious Servers & ;
This argument works on average but does 4
not work against adversaries that )

somehow pick k st. H(x) - k lands in the
red area with high probability for some x.

[SIXs]



SOLUTION

- Plant a hard SIS instance in each coefficient: 1D-SIS [ADDS21]



SOLUTION

- Plant a hard SIS instance in each coefficient: 1D-SIS [ADDS21]

- Yes, seriously!
- This requires g > 2*



SOLUTION

- Plant a hard SIS instance in each coefficient: 1D-SIS [ADDS21]
- Yes, seriously!
- This requires g > 2*
- Change the PRF output to H(x) - k 4+ Ha(X, co) [AG24]
- Ha() is some Random Oracle that randomly shifts H(x) - k
© Co =0 - k+ e} isa commitment to
- The trick is from [GKQMS24]
- g > poly(\) is sufficient

Stuck with a super-polynomial g
Big “signal-to-noise” ratio, forcing us to increase n, as above.



RELATED: CAN'T JusT DO IT™ — NIKE

NIKE enables Alice and Bob, who know each others’ public keys, to agree on shared key
without requiring any interaction [DH76]

- Deployed in WireGuard [HNSWZ20] and static DH is also used in e.g. Google’s QUIC.
- For lattices there are significant barriers [GKRS20].

- Stark contrast to interactive key-exchanges or plain public-key encryption

1. We send along some “hints” that allow to handle the noise
2. secrets are not re-used, allowing us to avoid expensive “well-formedness” proofs

- [GKOMS24] is an instantiation that essentially accepts the super-polynomial modulus


https://www.wireguard.com/

WRAPPING UP




REALISATIONS OF THIS BLUEPRINT

Work Model 1-time Offline Online Q
[ADDS21] H-H = 2MB
[ADDS21] M-M - 128GB
[AG24] M-M 114kB  198kB 232
[ESTX24] M-M 20kB  159kB 2%

H: semi-honest, M: malicious



AN ALTERNATIVE FROM FHE [ ]

We do have efficient FHE, indeed FHE ciphertexts are typically smaller than the messages
exchanged in the schemes discussed above.

- Simple idea:

1. Client FHE encrypts x as [x]
2. Server homomorphically computes PRF using plaintext k and [x] to obtain [Fr(x)]

3. Client FHE decrypts Fg(x)
- Problem: PRFs need deep circuits, deep circuits are expensive
- Proposal: Use Dark Matter (weak-)PRF candidate [BIPSW18] 3 (A - X mod 2) mod 3
where A is the secret key
- This can be computed with one level of FHE bootstrapping



OTHER ROUND-OPTIMAL ALTERNATIVES W/O TRUSTED SETUP

Work Assumption Model 1-time Offline Online
ADDS21  (R)LWE+SIS H-H = 2MB
ADDS21 (R)LWE+SIS M-M = 128GB
AG24 (R)LWE+SIS M-M 114kB 198kB
ADDG23  mod(2,3)+lattices M-H 2.5MB 10KB
ADDG23  mod(2,3)+lattices M-M 2.5MB 160KB
ESTX24 IMLWER-RU+MLE+SIS M-M 20kB 159KB
APRR24 mod(2,3) M-H, pp 4.75B 114.5B
FO023 AES+Garbled Circuits H-H - 6.79MB
Basso24  Higher-Dimensional isogenies  M-M = 28.9kB
HHM+23  Isogenies Fp + lattices + HEOT ~ H-H = 640kB
dSP23 Isogenies Fp M-H, pp 68.4 kB 384B
dsp23 Isogenies Fp M-H, pp - 16.38kB

adapted from https://heimberger.xyz/oprfs.html


https://heimberger.xyz/oprfs.html

FIN

THANK YOU
https://ia.cr/2019/1271
https://ia.cr/2023/232

https://ia.cr/2024/1459


https://ia.cr/2019/1271
https://ia.cr/2023/232
https://ia.cr/2024/1459
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