
Analyzing security of PAKE
Combiners for

Low-Entropy Cryptography

Michael Rosenberg

Cloudflare Research
US

Sebastian Faller

IBM Research – Europe
Switzerland

based on joint works with

On cryptographic keys

(high entropy, uniform)

auth, sig, shared key...

(low entropy, non-uniform)

auth, sig, shared key...

cryptography

cryptography

key

pwd, PIN, biometric

application

application

Low-entropy cryptography

(low entropy, non-uniform)

ctxt, sig, shared key...low-entropy

cryptography

pwd, PIN, biometric
application

Cryptography that works well

with „bad“ secrets/keys

absolutely no leakage on passwords, PINs,
biometrics, etc.

Example: Password-authenticated key exchange

EKE [BelMer92] – Password-encrypted Diffie-Hellman

Example: Password-authenticated key exchange

EKE [BelMer92] – Password-encrypted Diffie-Hellman

Composable security in the Ideal Cipher model [EC:DHPRY18, EC:JanRoyXu24]

Low-entropy primitives

Password-authenticated key exchange (PAKE)
Exchange a symmetric key from a shared password

• Symmetric (both parties share password)

• Asymmetric (server stores encoded password)

• Fuzzy (tolerates errors in password)

• Distributed/threshold (server role shared)

Password-protected secret sharing (PPSS)
Share and recover a secret with many servers

• Threshold, fuzzy...

Password-protected key retrieval (PPKR)
Like PPSS but rate-limited

• Fuzzy, distributed, threshold,...

Oblivious Pseudo-random Function (OPRF)
2-party computation of a PRF

• Allows enhancing password entropy

• Advantage over hashing: server remembers salt,

rate-limiting, precomputation protection

• Has become a design paradigm of low-entropy

schemes: OPRF + standard crypto

Back in 2018...

Identified 2 main reasons why PAKEs are not used

(1) There’s a lack of good PAKE implementations in useful languages

(2) Cryptographers are bad at communicating the value of their work

But now, finally...

Password-authenticated key exchange (PAKE)
Exchange a symmetric key from a shared password

Password-protected secret sharing (PPSS)
Share and recover a secret with many servers

Password-protected key retrieval (PPKR)
Like PPSS but rate-limited

Oblivious Pseudo-random Function (OPRF)
2-party computation of a PRF

https://github.com/fancy-cryptography/fancy-cryptography

Post-quantum low-entropy cryptography

no good solution in literature efficient, good solution standards & robust implement ations deployment

ppKR

(s)aPAKE

OPRF

PAKE

built from OPRFs

Transition now? Not necessary for authentication...

PAKE + key confirmation = secure password authentication

Fun fact: this could add password authentication to TLS 1.3 but is not used in practise [EC:HJKW23]

Checking login passwords
in a zero-knowledge fashion!

Password-protected key retrieval (PPKR)
Like PPSS but rate-limited

Oblivious Pseudo-random Function (OPRF)
2-party computation of a PRF

Password-authenticated key exchange (PAKE)
Exchange a symmetric key from a shared password

Password-protected secret sharing (PPSS)
Share and recover a secret with many servers

Low-entropy deployments deriving encryption keys
Harvest-now-decrypt later attacks

So.... we need to transition asap. But to what?

no good solution in literature efficient, good solution standards & robust implement ations deployment

ppKR

(s)aPAKE

OPRF

PAKE

built from OPRFs

Some time last year...

From: ****@[big-company].[some-country]

To: juliahesse2@gmail.com

Subject: Post-quantum OPRFs

Hi Julia,

we saw your paper that just came up on eprint,

and we were wondering whether it‘s a good idea

to implement it to make our ***** deployment

post-quantum. Any thoughts?

Millions of
users...

Legendre-based OPRF,
complex construction

Answer: Please don‘t!

mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:juliahesse2@gmail.com

From: ****@[big-company].[anonymized-country]

To: juliahesse2@gmail.com

Subject: Post-quantum OPRFs

Okay, but what if we hash it together with our

DH-based OPRF?

Some time last year...

mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:juliahesse2@gmail.com

This talk

Combiners for

Low-Entropy Cryptography

Can we build a PAKE/OPRF from a classical and
a pq PAKE/OPRF with just black-box access, and

with best-of-both security?

Password-Authenticated Key Exchange (PAKE)

Security properties

• Produces uniform keys

• No offline dictionary attacks on transcript
(passive attacker)

• 1 password guess per active attack

• Game-based or simulation-based (composable)
notions

PAKE

Alice Bob

pwA pwB

KA KB

KA = KB iff pwA = pwB

otherwise both random This talk!

Oblivious Pseudo-Random Function (OPRF)

Security properties

• Server does not learn anything about x

• Client does not learn anything about K beyond
the output

• Guaranteed uniform outputs for client (even if

server malicious)

• Game-based or simulation-based (composable)

notions

OPRF

Client Server

x K

PRF(K,x)

Allows modular protocol
design with OPRFs

OPRFs are great tools to
bootstrap uniform keys from

password – just set x=pw!

Black-box combiner

PRF combiner

KEM combiner

Black box property

• Black-box access
• A break of combiner always results in the

break of one of the building blocks

tldr: no matter how a component breaks, it does
not make the whole thing insecure!

Combining PAKEs – natural approaches

PAKE1 PAKE2

pw pw

H(K1,K2,tr)

pw pw

PAKE1

PAKE2

„Parallel“ combiner „Sequential“ combiner

H(K1,K2,tr)
H(K1,K2,tr) H(K1,K2,tr)

K1 K1

Combining OPRFs – natural approaches

OPRF1 OPRF2

x K1,K2

OPRF1

OPRF2

„Parallel“ combiner „Sequential“ combiner

H(F1(K1,x), F2(K2,x))

x K1

H(f, F2(K2,f))

f=F1(K1,x)

Challenges in combining low-entropy cryptography

PAKE

pw

OPRF

x

Components either cannot break in such a way that they leak
information about their input, OR they can‘t be fed pw/x (???)

Running into hard problems

• OPRFs imply OT:

OT sender chooses a PRF key K

OT sender encrypts OT inputs with PRF(K,0) and PRF(K,1) and sends both ctxts
OT receiver evaluates the PRF at its choice bit, and decrypts one of the ctxts

• With this we can build an OT combiner from an OPRF combiner

OT1 OPRF1

OPRF OT

OT2 OPRF2

MPC

MPC
combine transform

Running into hard problems

• OPRFs imply OT:

OT sender chooses a PRF key K

OT sender encrypts OT inputs with PRF(K,0) and PRF(K,1) and sends both ctxts
OT receiver evaluates the PRF at its choice bit, and decrypts one of the ctxts

• With this we can build an OT combiner from an OPRF combiner

OT1 OPRF1

OPRF OT

OT2 OPRF2

• Impossibility of black-box OT combiner [EC:HKNRR05] indicates that black-box
combining OPRFs is hard

MPC

MPC
combine transform

Enough theory, let‘s try to combine some PAKEs!

Combining PAKEs – in parallel

PAKE1 PAKE2

pw pw

H(K1,K2,tr) H(K1,K2,tr)

Yields a secure PAKE if both PAKEs

statistically hide the input passwords

Instantiations:
• EKE, CPace, SPAKE2 (classical)

• None... (post-quantum)

Combining PAKEs – sequentially

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

K1 K1

Goal: no statistical input hiding

properties on at least one PAKE

Idea: K1 does not allow brute-force

attacks on pw – PAKE2 can leak K1

Combining PAKEs – sequentially

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

K1 K1

Combining PAKEs – sequentially

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

K1 K1

Combining PAKEs – sequentially

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

K1 K1

Problem: although second PAKE can

assumed to be secure, it becomes

attackable through predicting K1

Active adversary can exchange a key

without knowing pw

Combining PAKEs – sequentially

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

H(pw,K1,tr) H(pw,K1,tr)

Fix: ensure that attacking PAKE2 implies

a password guess

Combining PAKEs – sequentially: Let‘s check!

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

H(pw,K1,tr) H(pw,K1,tr)

Case PAKE1 broken:

• PAKE2 ensures pseudorandomness

• PAKE1 statistically hides pw

Combining PAKEs – sequentially: Let‘s check!

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

H(pw,K1,tr) H(pw,K1,tr)

Case PAKE2 broken:

• PAKE1 ensures pseudorandomness

• PAKE2 leaking its input does not

expose pw to dictionary attacks

thanks to the entropy in K1

• (Small) caveat: PAKE2 needs to

statistically hide equality of high-

entropy inputs

Combining PAKEs – sequentially

pw pw

PAKE1

PAKE2

H(K1,K2,tr) H(K1,K2,tr)

H(pw,K1,tr) H(pw,K1,tr)

Yields a secure PAKE if PAKE1 statistically

hides the input passwords, and PAKE2

statistically hides high-entropy input equality

Instantiations

PAKE1: EKE, CPace, SPAKE2 (classical)
PAKE2: OCAKE, CAKE, CHIC (post-quantum)

Behold...

Hybrid
OPRFs

Combining OPRFs – in parallel

Remember: black-box combiner not feasible,

so we need additional assumptions

Hope: with two statistical input-hiding OPRFs,

this is a secure OPRF even if one of the

underlying OPRFs break computationally
OPRF1 OPRF2

x K1,K2

H(F1(K1,x), F2(K2,x))

Combining OPRFs – Statistical input-hiding is not sufficient

Problem: predictable outputs of OPRF1

cause simulation failures when extracting

keys from active attacks

Violates property of uniform outputs in

the presence of active attacker
OPRF1 OPRF2

x K1,K2

H(F1(K*,x), F2(K2,x))

Combining OPRFs – Statistical input-hiding is not sufficient

Fix: require statistical client security

Instantiations
OPRF1: 2HashDH (classical)

OPRF2: Legendre-based 2HashPRF (post-
quantum)*,**

* NOT as implemented in the paper (requires
statistical OT instead of computational)

** Unclear efficiency, can be significantly
slower as in benchmarks

OPRF1 OPRF2

x K1,K2

H(F1(K1,x), F2(K2,x))

Responding to that simple question

From: ****@[big-company].[anonymized-country]

To: juliahesse2@gmail.com

Subject: Post-quantum OPRFs

Okay, but what if we hash it together with our

DH-based OPRF?

Answer: This can give you a secure OPRF *only if* you implement
that post-quantum one with a statistically secure OT, which

decreases efficiency compared to the paper benchmarks.

Be aware that a wrongly implemented or theoretically flawed
post-quantum OPRF can harm the security of your existing DH-

based deployment (!)

mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:juliahesse2@gmail.com

Take this away

There are no black-box combiners for PAKEs, OPRFs, ppKRs,...
All combiners from this talk can lead to *insecure* protocols if the required properties do not hold

Still, they are the best way we know to transition to post-quantum
low-entropy algorithms
They do protect against failures in the underlying assumptions, i.e., a quantum attacker breaking DH, or a
flawed post-quantum assumption

Combiners for PAKE Combiners for OPRFs
(with Michael Rosenberg) (with Sebastian Faller)

https://eprint.iacr.org/2024/1621 https://eprint.iacr.org/2025/1084

Combining OPRFs – Sequential does not help

Intuition: leaking F1(K1,x) and K1 exposes

x to offline attacks if K is also leaked

Why does it work in PAKE?

Sequential PAKE combiner principle:

build a secure channel with PAKE1, and

execute PAKE2 in it.

We can trust a PAKE party who knows

the same password as we do. But we

can never trust an OPRF server. So a

channel to the server does not help us.

OPRF1

OPRF2

x K1,K2

H(f, F2(K2,f))

f=F1(K1,x)

	Slide 1: Analyzing security of PAKE
	Slide 2: On cryptographic keys
	Slide 3: Low-entropy cryptography
	Slide 4: Example: Password-authenticated key exchange
	Slide 5: Example: Password-authenticated key exchange
	Slide 6: Low-entropy primitives
	Slide 7: Back in 2018...
	Slide 8: But now, finally...
	Slide 9: Post-quantum low-entropy cryptography
	Slide 10: Transition now? Not necessary for authentication...
	Slide 11: Low-entropy deployments deriving encryption keys Harvest-now-decrypt later attacks
	Slide 12: So.... we need to transition asap. But to what?
	Slide 13: Some time last year...
	Slide 14: Some time last year...
	Slide 15: This talk
	Slide 16: Password-Authenticated Key Exchange (PAKE)
	Slide 17: Oblivious Pseudo-Random Function (OPRF)
	Slide 18: Black-box combiner
	Slide 19: Combining PAKEs – natural approaches
	Slide 20: Combining OPRFs – natural approaches
	Slide 21: Challenges in combining low-entropy cryptography
	Slide 22: Running into hard problems
	Slide 23: Running into hard problems
	Slide 24: Enough theory, let‘s try to combine some PAKEs!
	Slide 25: Combining PAKEs – in parallel
	Slide 26: Combining PAKEs – sequentially
	Slide 27: Combining PAKEs – sequentially
	Slide 28: Combining PAKEs – sequentially
	Slide 29: Combining PAKEs – sequentially
	Slide 30: Combining PAKEs – sequentially
	Slide 31: Combining PAKEs – sequentially: Let‘s check!
	Slide 32: Combining PAKEs – sequentially: Let‘s check!
	Slide 33: Combining PAKEs – sequentially
	Slide 34: Behold...
	Slide 35: Combining OPRFs – in parallel
	Slide 36: Combining OPRFs – Statistical input-hiding is not sufficient
	Slide 37: Combining OPRFs – Statistical input-hiding is not sufficient
	Slide 38: Responding to that simple question
	Slide 39: Take this away There are no black-box combiners for PAKEs, OPRFs, ppKRs,... All combiners from this talk can lead to *insecure* protocols if the required properties do not hold Still, they are the best way we know to transition to post-quant
	Slide 40: Combining OPRFs – Sequential does not help

