Michael Rosenberg

Cloudfla
re R
0S esearch

y

CLOUDFLARE'

u-'rwurypt

Lucian Hanz

Ludovt

paniel Slama
of the We

Web site

WorkshoP on Quantum—Safe Hybri h

)

ik (C\SPA)
der Bundeswehr Munc

nig (Un‘wers'\t‘a'\t
rkshoR

EPITA

ic perret (
jan \nstitute o

on (ETH Zurich
(Un'wers\ty o

)

Paderbom‘)

On cryptographic keys

key
(high entropy, uniform) .

auth, sig, shared key...

cryptography application

-/

pwd, PIN, biometric auth, sig, shared key...

cryptography application

(low entropy, non-uniform)

Low-entropy cryptography

pwd, PIN, biometric ctxt, sig, shared key...

»
» >

(low entropy, non-uniform)

absolu’celj no Ieakage on [oo\ssworo{s, PINS,
biometrics, etc.

Cryptography that works well ./
with ,bad” secrets/keys

Example: Password-authenticated key exchange

Alice(pw) (9,0, \) Bob(pw')

(sk, pk) +—g KGen(1%)
¢ < Encpw (pk)

A < Decpy ()
(sk’, pk’) <—g KGen(1*)

d + Enc,, (pk’)

B + Decpw(c')
output Shk(sk’, A)

output Shk(sk,

-encrypted Diffie-Hellman

Example: Passwon

Alice(pw) Bob(pw’)

(sk, pk) <—g KGen(1?)

¢ < Encpw (pk) A < Decpy ()

(sk’, pk’) <—g KGen(1%)

d + Enc,, (pk’)

B + Decpw(c')
output Shk(sk’, A)

output Shk(sk, B)

EKE [BelMer92), ™ .« ed Diffie-Hellman

Composable security in the Ic. . vipher model [EC:DHPRY 18, EC:JanRoyXu24]

Low-entropy primitives

Password-authenticated key exchange (PAKE) Password-protected key retrieval (PPKR)
Exchange a symmetric key from a shared password Like PPSS but rate-limited

» Symmetric (both parties share password) * Fuzzy, distributed, threshold,...

« Asymmetric (server stores encoded password)
* Fuzzy (tolerates errors in password)
 Distributed/threshold (server role shared)

Oblivious Pseudo-random Function (OPRF)

2- party computation of a PRF
Allows enhancing password entropy

* Advantage over hashing: server remembers salt,
rate-limiting, precomputation protection

* Has become a design paradigm of low-entropy
schemes: OPRF + standard crypto

Password-protected secret sharing (PPSS)
Share and recover a secret with many servers
» Threshold, fuzzy...

Back in 2018...

Let’s talk about PAKE

The first rule of PAKE is: nobody ever wants to talk about PAKE. The second rule of
PAKE is that this is a shame, because PAKE — F Mﬂ"‘e \""
which stands for Password Authenticated Key

Exchange — is actually one of the most useful 123456
technologies that (almost) never gets used. It M
should be deployed everywhere, and yet it isn’t.
ggn\" *
To understand why this is such a damn shame, & Matthew Green
let’s start by describing a very real problem. I'm a cryptographer and professor at

Johns Hopkins University. I've

|dentified 2 main reasons why PAKEs are not used

(1) There’s alack of good PAKE implementations in useful languages
(2) Cryptographers are bad at communicating the value of their work

But now, finally...

Password-authenticated key exchange (PAKE)
Exchange a symmetric key from a shared password

. @ @ © 1Password

Open
SSL
sk matter

Password-protected secret sharing (PPSS)
Share and recover a secret with many servers

Password-protected key retrieval (PPKR)
Like PPSS but rate-limited

(O

Oblivious Pseudo-random Function (OPRF)
2-party computation of a PRF

© .

https://github.com/fancy-cryptography/fancy-cryptography

Post-quantum low-entropy cryptography

PPKR e mmmmm e

(s)aPAKE |==mmmm e '\ built From OPRFs

OPRF |[=============

PAKE |=====m e

|

no good solution in literature efficient, good solution standards & robust implementations deployment

Transition now? Not necessary for authentication...

Authentication

User and machine authentication typically involves the use of a digital signature algorithm or key-establishment scheme.

NIST recommends that quantum-vulnerable algorithms|can be used until quantum computers can break them. At that

point, an upgrade will be required. This applies to network security protocols also, where the algorithm used for

authentication can be transitioned separately.

Clr\ecking login passwords
in a zero-knowledge fashion!

PAKE + key confirmation = secure password authentication

Fun fact: this could add password authentication to TLS 1.3 but is not used in practise [EC:HJKW23]

Low-entropy deployments deriving encryption keys

Harvest-now-decrypt later attacks

Password-authenticated key exchange (PAKE)

Exchange a symmetric key from a shared password

(O

Password-protected secret sharing (PPSS)
Share and recover a secret with many servers

Password-protected key retrieval (PPKR)
Like PPSS but rate-limited

(O

Oblivious Pseudo-random Function (OPRF)
2-party computation of a PRF

(O

So.... we need to transition asap. But to what?

PPKR b e e

(s)aPAKE |--——mmmmmmoo \ built from OPRFs

OPRF |[===========-=

PAKE |=====m e

no good solution in literature efficient, good solution standards & robust impleme

Some time last year...

From: ****@[big—-company].[some—-countrvy]
To: JuliahesseZ@gmail.com
Subject: Post-quantum OPRFs

Hi Julia, Legendre—baseo{ OPRF,
(" comlolex construction

we saw your paper that just came up on eprint, Millions of
and we were wondering whether it‘'s a good idei#} users...
to implement it to make our ***** deployment
post—-quantum. Any thoughts?

* Kk k k%

Answer: Please don't!

mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:juliahesse2@gmail.com

Some time last year...

From: ****@[big-company]. [anonymized-country]
To: JuliahesseZ@gmail.com
Subject: Post-quantum OPRFs

Okay, but what if we hash it together with our
DH-based OPRE?

mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:juliahesse2@gmail.com

This talk

Combiners for

Low-Entropy Cryptography

Can we build a PAKE/OPRF from a classical and
a pq PAKE/OPRF with just black-box access, and
with best-of-both security?

Password-Authenticated Key Exchange (PAKE)

Alice Bob
PWa pwg

N /

KA'/ \ Ks

Ka = Kg iff pw, = pwp
otherwise both random

Security properties

Produces uniform keys

No offline dictionary attacks on transcript
(passive attacker)

1 password guess per active attack

Game-based or simulation-based (composable)

notions K
This talk!

Oblivious Pseudo-Random Function (OPRF)

Client Server
X K

\1 l/ » Server does not learn anything about x

Security properties

* Client does not learn anything about K beyond
the output

v

PRF(K,x) » Guaranteed uniform outputs for client (even if
’ server malicious)

OPRFs are great tools to Game-based or simulation-based (composable)
boo’cs’cmp uniform kejs from notions

loo\ssword - just set x=pw! ’K

Allows modular loro’cocol
design with OPRFs

Black-box combiner

-

\
>.
" Q_W — PRF combiner PRF; (K,) & PRFy(K’,)
\ .

W, KEM combiner H (K1, Ko, c1,¢9)

Black box property

« Black-box access
* A break of combiner always results in the
break of one of the building blocks

tldv: no matter how a component breaks, it does
not make the whole thing insecure!

Combining PAKEs — natural approaches

pw pw

\\.//

7N

H(K,,K,,tr) H(K;,Ky,tr)

,Parallel* combiner

pw pw
A

H(K'I!KZ!tr) H(K1,K2,tl’)

.Sequential” combiner

Combining OPRFs — natural approaches

f=F, (K, ,x)Q
S

H(F1(K4,X), F2(Ky,X))
H(f, F2(Ky,f))

,Parallel" combiner .Sequential” combiner

Challenges in combining low-entropy cryptography

pw X

N\ N\

))

Components either cannot break in such a way that they leak
information about their input, OR they can't be fed pw/x (22?)

Running into hard problems

« OPRFs imply OT:

OT sender chooses a PRF key K
OT sender encrypts OT inputs with PRF(K,0) and PRF(K,1) and sends both ctxts
OT receiver evaluates the PRF at its choice bit, and decrypts one of the ctxts

» With this we can build an OT combiner from an OPRF combiner

MPC

OT1 T ’ OPRF1 combing transform 5
e OPRF > OT
OT, ™ OPRF,

Running into hard problems

« OPRFs imply OT:

OT sender chooses a PRF key K
OT sender encrypts OT inputs with PRF(K,0) and PRF(K,1) and sends both ctxts
OT receiver evaluates the PRF at its choice bit, and decrypts one of the ctxts

» With this we can build an OT combiner from an OPRF combiner

MPC N -

OT1 OPR 1 combine OPRF transform 5 OT
MPC

OoT, OPRF,

N

indicates that black-box
combining OPRFs is hard

» Impossibility of black-box OT combiner [EC:HKNRRO5]

Enough theory, let's try to combine some PAKEs!

Combining PAKEs — in parallel

pw pw : :
Yields a secure PAKE if both PAKEs
/ statistically hide the input passwords
Instantiations:

* None... (post-quantum)
X
ve ‘5e
wvte e
not &

H(K,,K,,tr) H(K;,Ka,tr)

Combining PAKEs — sequentially

pW pw Goal: no statistical input hiding

\ / properties on at least one PAKE

Idea: K; does not allow brute-force
attacks on pw — PAKE, can leak K|

Combining PAKEs — sequentially

/ N

H(K1 ’KZ!tr) H(K1 ,Kz,tr)

Combining PAKEs — sequentially

/ N

H(K'] ’KZ!tr) H(K1 ,Kz,tr)

Combining PAKEs — sequentially

/ N

H(K1 ’KZ!tr) H(K1 ,K2,tr)

Problem: although second PAKE can
assumed to be secure, it becomes
attackable through predicting K,

Active adversary can exchange a key
without knowing pw

Combining PAKEs — sequentially

pw

\
H(pw,K,,tr) ()

/

H(K,,K;,tr)

pw

/

D H(pw,Kj,tr)
N

H(K1 ’K21tr)

Fix: ensure that attacking PAKE, implies
a password guess

Combining PAKEs — sequentially: Let's check!

pwW pw Case PAKE, broken:

\ / PAKE, ensures pseudorandomness

D PAKE; statistically hides pw
H(pw,K,,tr) Q D H(pw,Kqtr)

/ N

H(K1, 1tr) H(K1, ,tr)

Combining PAKEs — sequentially: Let's check!

pw pw

N/

H(pw, ,tr)Q DH(pw, tr)

/ N

H(!KZJtr) H(,K2,tr)

Case PAKE, broken:
 PAKE, ensures pseudorandomness

 PAKE; leaking its input does not
expose pw to dictionary attacks
thanks to the entropy in K,

* (Small) caveat: PAKE, needs to
statistically hide equality of high-
entropy inputs

Combining PAKEs — sequentially

pw pw

N/

H(pw,K, ,tr)() D H(pw,K,tr)
/ ™~

H(K1 ’KZ!tr) H(K1 ,Kz,tr)

Yields a secure PAKE if PAKE, statistically
hides the input passwords, and PAKE,
statistically hides high-entropy input equality

Instantiations
PAKE,:
PAKE.,:

Ny

Behold...

Combining OPRFs — in parallel

KK Remember: black-box combiner not feasible,
X b2 so we need additional assumptions

\‘\K/ Hope: with two statistical input-hiding OPRFs,
this is a secure OPRF even if one of the

underlying OPRFs break computationally
H(F(K4,x), F2(Kz,X))

Combining OPRFs — Statistical input-hiding is not sufficient

Problem: predictable outputs of OPRF,
cause simulation failures when extracting

\\K/ keys from active attacks
Violates property of uniform outputs in
the presence of active attacker

H(F1 (K*’X)’ FZ(KZ’X))

Combining OPRFs — Statistical input-hiding is not sufficient

Instantiations

X K,,K, Fix: require statistical client security
OPRF;:
OPRF,;:

/ / * NOT as implemented in the paper (requires

statistical OT instead of computational)
H(Fs(K.x), Fo(Kax)) ** Unclear efficiency, can be significantly

\
slower as in benchmarks aer® ‘5"‘)g
e

Responding to that simple question

From: ****Wd[big-company]. [anonymized—-country]
To: JuliahesseZ2@dgmail.com
Subject: Post-quantum OPRFs

Okay, but what if we hash it together with our
DH-based OPRE?

Answer: This can give you a secure OPRF *only if* you implement
that post-quantum one with a statistically secure OT, which
decreases efficiency compared to the paper benchmarks.

Be aware that a wrongly implemented or theoretically flawed
post-quantum OPRF can harm the security of your existing DH-
based deployment (!)

mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:****@[big-company].[anonymized-country
mailto:juliahesse2@gmail.com

Take this away

There are no black-box combiners for PAKEs, OPRFs, PPKRs,...

All combiners from this talk can lead to *insecure* protocols if the required properties do not hold

Still, ’Ckey are the
low-entropy algorithms

They do

flawed post-quantum assumption

Combiners for PAKE

(with Michael Rosenberg)
https://eprint.iacr.org/2024/1621

to post—quantum

, e, a quantum attacker breo\king DH, or a

Combiners for OPRFs

(with Sebastian Faller)
https://eprint.iacr.org/2025/1084

Combining OPRFs — Sequential does not help

X KiK, Intuition: leaking F(K,x) and K, exposes
\ / x to offline attacks if K is also leaked

Why does it work in PAKE?
Sequential PAKE combiner principle:
=F (K1 X)Q build a secure channel with PAKE, and
e execute PAKE, in it.

We can trust a PAKE party who knows
the same password as we do. But we
can never trust an OPRF server. So a

H(f, F5(K,,f
(f, Fa(K2.1)) channel to the server does not help us.

	Slide 1: Analyzing security of PAKE
	Slide 2: On cryptographic keys
	Slide 3: Low-entropy cryptography
	Slide 4: Example: Password-authenticated key exchange
	Slide 5: Example: Password-authenticated key exchange
	Slide 6: Low-entropy primitives
	Slide 7: Back in 2018...
	Slide 8: But now, finally...
	Slide 9: Post-quantum low-entropy cryptography
	Slide 10: Transition now? Not necessary for authentication...
	Slide 11: Low-entropy deployments deriving encryption keys Harvest-now-decrypt later attacks
	Slide 12: So.... we need to transition asap. But to what?
	Slide 13: Some time last year...
	Slide 14: Some time last year...
	Slide 15: This talk
	Slide 16: Password-Authenticated Key Exchange (PAKE)
	Slide 17: Oblivious Pseudo-Random Function (OPRF)
	Slide 18: Black-box combiner
	Slide 19: Combining PAKEs – natural approaches
	Slide 20: Combining OPRFs – natural approaches
	Slide 21: Challenges in combining low-entropy cryptography
	Slide 22: Running into hard problems
	Slide 23: Running into hard problems
	Slide 24: Enough theory, let‘s try to combine some PAKEs!
	Slide 25: Combining PAKEs – in parallel
	Slide 26: Combining PAKEs – sequentially
	Slide 27: Combining PAKEs – sequentially
	Slide 28: Combining PAKEs – sequentially
	Slide 29: Combining PAKEs – sequentially
	Slide 30: Combining PAKEs – sequentially
	Slide 31: Combining PAKEs – sequentially: Let‘s check!
	Slide 32: Combining PAKEs – sequentially: Let‘s check!
	Slide 33: Combining PAKEs – sequentially
	Slide 34: Behold...
	Slide 35: Combining OPRFs – in parallel
	Slide 36: Combining OPRFs – Statistical input-hiding is not sufficient
	Slide 37: Combining OPRFs – Statistical input-hiding is not sufficient
	Slide 38: Responding to that simple question
	Slide 39: Take this away There are no black-box combiners for PAKEs, OPRFs, ppKRs,... All combiners from this talk can lead to *insecure* protocols if the required properties do not hold Still, they are the best way we know to transition to post-quant
	Slide 40: Combining OPRFs – Sequential does not help

