
The PQ Transition at
Signal
Rolfe Schmidt

Signal Messenger
SPIQE  24 Jun 2025

1

About Signal

2

> echo $STD_SGNL_RLVNT_SPIEL

3

Signalʼs Mission and Vision

● Protect free expression and enable secure global communication
through open source privacy technology.

● Make conversations with anyone in the world effortless, private, even
joyful.

● Privacy isnʼt an optional mode — itʼs how Signal works. Every message,
every call, every time.

● We are an independent 501c3 nonprofit and will never compromise the
mission.

4

Signalʼs Mission and Vision

Our mission is NOT:

● Research
● Deploying fancy cryptography
● Developing general purpose open source software libraries

5

But sometimes we
need to do these
things to get our
work done.
also, they're fun

6

Signalʼs Mission ⇒ Usability is Key

7

“Effortlessˮ + “anyone in the worldˮ is hard.

● It constrains what we can deploy.
● It requires a large engineering effort.

But worth it.

Our focus on usability without compromising privacy is one key thing made
Signal successful from the start.

Global usability is part of our mission.

PQ Transition ⊊ Ongoing Operations

To fulfill our mission we are always scanning for threats to our usersʼ
privacy and prioritizing our limited resources to address them.

Some threats are immediate, others distant.

Some threats are large, others small.

Some are easy to address, others are complex, and for some we donʼt have
solutions.

And some happen to be threats from quantum computing.

8

Thinking About a Project

9

Impact Development Effort and Risk

Targeted Lower

Widespread Moderate

Anticipated High

Major cross-team deployment

We have to consider
the potential impact
of a threat vs the risk
and effort of
mitigating it.

10

Now letʼs see how
we are applying
these principles to
our post-quantum
transition.

11

Transitioning
the Signal
Protocol
A Case Study

● PQXDH 2023
● Triple Ratchet (soon!)
● Full Hybrid Security ?

12

The Signal Protocol 2013
Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

13

The Signal Protocol 2013
Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

These need post-quantum
protection! 14

The Signal Protocol 2013
Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4)

DH1 DH2

DH3

DH4

Symmetric Key crypto is already
quantum safe. 15

The PQXDH Handshake

16

K. Bhargavan, C. Jacomme, F. Kiefer and the Signal Team

X3DH and PQXDH The Problem

Flashback Spring 2023

Problem: An attacker that can compute curve25519 logarithms could
compute X3DH session secrets and Double Ratchet updates, learning all
session secrets.

Scope: All user messages and media were at risk to a HNDL attack.

But it wasnʼt 2013 NIST post-quantum standardization was pretty far along.

17

X3DH PQXDH Adding Post-Quantum Security

18

Classic X3DH

Alex Blake

IKA ↔ SPKB
EKA ↔ IKB

EKA ↔ SPKB
(* EKA ↔ OPKB *)

SK = KDF(DH1 || DH2 || DH3
|| DH4)

100s of bytes
Handshake overhead

X3DH PQXDH Adding Post-Quantum Security

19

Classic X3DH

Alex Blake

IKA ↔ SPKB
EKA ↔ IKB

EKA ↔ SPKB
(* EKA ↔ OPKB *)

SK = KDF(DH1 || DH2 || DH3
|| DH4)

100s of bytes
Handshake overhead

PQXDH

Alex Blake

IKA ↔ SPKB
EKA ↔ IKB

EKA ↔ SPKB
(* EKA ↔ OPKB *)

1000s of bytes
Handshake overhead

SK = KDF(DH1 || DH2 || DH3
|| DH4 || SS)

KEM.Encaps(PQPKB)
→ (SS, CT)

X3DH PQXDH Adding Post-Quantum Security

20

Classic X3DH

Alex Blake

IKA ↔ SPKB
EKA ↔ IKB

EKA ↔ SPKB
(* EKA ↔ OPKB *)

SK = KDF(DH1 || DH2 || DH3
|| DH4)

100s of bytes
Handshake overhead

PQXDH

Alex Blake

IKA ↔ SPKB
EKA ↔ IKB

EKA ↔ SPKB
(* EKA ↔ OPKB *)

1000s of bytes
Handshake overhead

SK = KDF(DH1 || DH2 || DH3
|| DH4 || SS)

KEM.Encaps(PQPKB)
→ (SS, CT)

Key Design Principles

● Minimal change: Add ONE
post-quantum key/ciphertext

● PQ HNDL protection: A MAJOR gain
● No loss of ECDH security: Don’t

remove effective security!
● Acceptable cost: Storage costs are

significant, but worth it.

Classical
Quantum
vulnerable

HNDL-Hybrid
Partially quantum

resistant

Protocol Details Matter

21

There is a lot more to specifying a protocol than a nice picture.

Details matter, and formal verification - with ProVerif and CryptoVerif
BJKS24 - was an important part of getting it right.

Protocol description: https://signal.org/docs/specifications/pqxdh/

BJKS24 https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan

https://signal.org/docs/specifications/pqxdh/
https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan

PQXDH Impact, Risk, and Effort

22

Impact Development Effort and
Risk

Widespread. Doesn’t get much easier.

Few challenges.
Acceptable cost.
Huge impact.

This was an easy
choice.

23

What this means for our users

All Signal Protocol sessions started in our app today are just as secure as
ever, but also enjoy post-quantum HNDL protection.

Even better - once the session is established, even an attacker with a
quantum computer wonʼt be able to read the messages.

Unless they compromise one of the devices…

24

The Ratchets

25

B. Auerbach, Y. Dodis, D. Jost, S. Katsumata, T. Prest, K. Bhargavan, F. Kiefer and
the Signal Team

Double Ratchet: The Problem

Problem: Signal messages do not have post-quantum PCS. This matters
today: a device compromise creates an HNDL opportunity.

Scope: Targeted.

What needs to change: The “Public Ratchetˮ of the Double Ratchet protocol
needs post quantum security.

26

Public Ratchet Basic Idea

Perform fresh key exchanges as you
send and receive messages.

Use the fresh keys to update your
session state.

27

We call this
Continuous Key
Agreement CKA
ECACD19

28

The Diffie-Hellman Ratchet
CKA is easy with Diffie-Hellman key agreement:

 29

Alex Blake

Alex

The Diffie-Hellman Ratchet
CKA is easy with Diffie-Hellman key agreement:

32B for curve25519

30

Blake

a1

Alex

The Diffie-Hellman Ratchet
CKA is easy with Diffie-Hellman key agreement:

 31

Blake

a1

Alex

🔒🔒

🔒

The Diffie-Hellman Ratchet
CKA is easy with Diffie-Hellman key agreement:

 32

Blake

a1

🔒🔒

🔒

The Diffie-Hellman Ratchet
CKA is easy with Diffie-Hellman key agreement:

Alex Blake

33

They Healed!

Thatʼs Post
Compromise
Security PCS.

34

A Post Quantum Ratchet
CKA looks almost the same with a PQ KEM ECACD19

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

ek2||ct1 (dk2,ek2) ← KEM.gen()

(k1, ct1) ← KEM.encaps(ek1)
k1 ← KEM.decaps(dk1, ct1)

ek3||ct2(dk3,ek3) ← KEM.gen()

(k2, ct2) ← KEM.encaps(ek2)
k2 ← KEM.decaps(dk2, ct2)

35

BlakeAlex

A Post Quantum Ratchet
CKA looks almost the same with a PQ KEM ECACD19

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

ek2||ct1 (dk2,ek2) ← KEM.gen()

(k1, ct1) ← KEM.encaps(ek1)
k1 ← KEM.decaps(dk1, ct1)

ek3||ct2(dk3,ek3) ← KEM.gen()

(k2, ct2) ← KEM.encaps(ek2)
k2 ← KEM.decaps(dk2, ct2)

36

Alex Blake

For ML-KEM 768 this is
2272 bytes.

35x
Using MLKEM 768 like this would increase the size of a typical small

message by a factor of 35.

This costs us and our users.

This affects usability for users with poor connections.
37

Two ways to reduce bandwidth
Amortize (like PQ3

● Donʼt send any messages for a long
time.

● Then send a big message and repeat it
until you get a response.

● Great in some situations, less great in
others.

38

Two ways to reduce bandwidth
Amortize (like PQ3

● Donʼt send any messages for a long
time.

● Then send a big message and repeat it
until you get a response.

● Great in some situations, less great in
others.

39

Transmit in pieces

● Break a long message into smaller
chunks.

● Send one chunk per message.
● Careful!

○ Messages must get transmitted even if
the chunks can be adversarially
dropped!

○ Canʼt just send each chunk once.
○ Canʼt even send round-robin.

Chunking with Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

40

Chunking with Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

c1

c2

c3

c4

c100
…

…
st

re
am

 o
f c

od
ew

or
ds

Codewords are
● Fixed size
● Smaller than the initial

message
● First N codewords

concatenated are the initial
message* 41

Chunking with Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder

c1

c2

c3

c4

c100
…

…
st

re
am

 o
f c

od
ew

or
ds

lo
ng

 m
es

sa
ge

Decoder

Any N codewords can
be used to decode!

Codewords are
● Fixed size
● Smaller than the initial

message
● First N codewords

concatenated are the initial
message* 42

Secure Messaging
with Sparse CKA
Now we can take any CKA and turn
it into a “chunkedˮ protocol.

Note: It isnʼt a CKA anymore
syntactically because it doesnʼt emit
a new key every time it sends or
receives a message.

So we define a “Sparse CKAˮ
SCKA) and show how to construct
secure Messaging from a Sparse
CKA.

EK1 || CT0

Alex Blake

Still sending
messages

but nothing
to do for

this
protocol…

43

Secure Messaging
with Sparse CKA
Now we can take any CKA and turn
it into a “chunkedˮ protocol.

Note: It isnʼt a CKA anymore
syntactically because it doesnʼt emit
a new key every time it sends or
receives a message.

So we define a “Sparse CKAˮ
SCKA) and show how to construct
secure Messaging from a Sparse
CKA.

EK1 || CT0

EK2 || CT1

Alex Blake

Still sending
messages

but nothing
to do for

this
protocol…

Still sending
messages

but nothing
to do for

this
protocol…

44

Secure Messaging
with Sparse CKA
Now we can take any CKA and turn
it into a “chunkedˮ protocol.

Note: It isnʼt a CKA anymore
syntactically because it doesnʼt emit
a new key every time it sends or
receives a message.

So we define a “Sparse CKAˮ
SCKA) and show how to construct
secure Messaging from a Sparse
CKA.

EK1 || CT0

EK2 || CT1

EK3 || CT2

Alex Blake

Still sending
messages

but nothing
to do for

this
protocol…

Still sending
messages

but nothing
to do for

this
protocol…

Still sending
messages

but nothing
to do for

this
protocol…

45

So weʼre done?
● Use MLKEM to instantiate the

KEM-based CKA from
ECACD19.

● Use our “chunking compilerˮ to
turn it into an SCKA.

● Drop this into our SCKA-based
Secure Messaging protocol to get
messaging with MLWE-based
security.

● Hybridize it with the classic
double ratchet.

46

No.

We can do
better.

47

The Problems
When we “chunkˮ the Standard KEM
CKA protocol, there is always
someone sitting quiet.

And look how long Alex and Blake
have to hold onto their secrets. 😬.

Big attack surface, slow key
emission.

Canʼt they do something?

EK1 || CT0

Alex Blake

D
K

1🔑
S

S
0🗝

D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑

48

The Problems
When we “chunkˮ the Standard KEM
CKA protocol, there is always
someone sitting quiet.

And look how long Alex and Blake
have to hold onto their secrets. 😬.

Big attack surface, slow key
emission.

Canʼt they do something?

EK1 || CT0

EK2 || CT1

Alex Blake

D
K

1🔑

D
K

2🔑
S

S
1🗝

S
S

0🗝

D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑

49

The Problems
When we “chunkˮ the Standard KEM
CKA protocol, there is always
someone sitting quiet.

And look how long Alex and Blake
have to hold onto their secrets. 😬.

Big attack surface, slow key
emission.

Canʼt they do something?

EK1 || CT0

EK2 || CT1

EK3 || CT2

Alex Blake

D
K

1🔑

D
K

2🔑
S

S
1🗝

S
S

0🗝

D
K

0🔑

D
K

3🔑S
S

2🗝

KEM Shared Secret 🗝

Decapsulation Key 🔑

50

Ways to Do BetterTM:
1. Reduce the attack surface.
2. Blocked? Sample something and send!
3. Open the KEM black box.

51

Open the KEM Black Box:
Incremental KEM

An MLKEM Encapsulation key has two
parts:

1. A 32B seed that gets expanded into a
matrix A.

2. A “noisy vector ,ˮ As + e, where s is a
decapsulation secret and e is small
error.

An MLKEM Ciphertext has two parts:

1. A “compressed noisy vector ,ˮ ATsʼ +
eʼ, where sʼ is a decapsulation secret
and eʼ is small error.

2. A “reconciliation messageˮ

seed
(32 B)

EKvec
noisy vector

(1152 B)

M
L-

K
E

M
 7

68
 E

nc
ap

su
la

tio
n

K
ey

CT1
compressed

noisy
vector
(960B)

CT2
Reconciliation

(128 B)

M
L-

K
E

M
 7

68
 C

ip
he

rte
xt

52

Open the KEM Black Box:
Incremental KEM

An MLKEM Encapsulation key has two
parts:

1. A 32B seed that gets expanded into a
matrix A.

2. A “noisy vector ,ˮ As + e, where s is a
decapsulation secret and e is small
error.

An MLKEM Ciphertext has two parts:

1. A “compressed noisy vector ,ˮ ATsʼ +
eʼ, where sʼ is a decapsulation secret
and eʼ is small error.

2. A “reconciliation messageˮ

seed
(32 B)

EKvec
noisy vector

(1152 B)

M
L-

K
E

M
 7

68
 E

nc
ap

su
la

tio
n

K
ey

CT1
compressed

noisy
vector
(960B)

CT2
Reconciliation

(128 B)

M
L-

K
E

M
 7

68
 C

ip
he

rte
xt

We only need seed

and H(EK) - 64B - to

compute this part!

53

Open the KEM Black Box:
Incremental KEM

An MLKEM Encapsulation key has two
parts:

1. A 32B seed that gets expanded into a
matrix A.

2. A “noisy vector ,ˮ As + e, where s is a
decapsulation secret and e is small
error.

An MLKEM Ciphertext has two parts:

1. A “compressed noisy vector ,ˮ ATsʼ +
eʼ, where sʼ is a decapsulation secret
and eʼ is small error.

2. A “reconciliation messageˮ

seed
(32 B)

EKvec
noisy vector

(1152 B)

M
L-

K
E

M
 7

68
 E

nc
ap

su
la

tio
n

K
ey

CT1
compressed

noisy
vector
(960B)

CT2
Reconciliation

(128 B)

M
L-

K
E

M
 7

68
 C

ip
he

rte
xt

We only need seed

and H(EK) - 64B - to

compute this part!

We need all of EK
To compute this.

54

Idea: Now we can
sample CT1 early and
send it in parallel
with EK.

55

The MLKEM Braid
Protocol

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start
sending it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending
EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!
they can start sending CT2.

● When Alex gets CT2 they
can start using the shared
secret and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

56

The MLKEM Braid
Protocol

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start
sending it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending
EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!
they can start sending CT2.

● When Alex gets CT2 they
can start using the shared
secret and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

E
S
🔑CT1

57

The MLKEM Braid
Protocol

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start
sending it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending
EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!
they can start sending CT2.

● When Alex gets CT2 they
can start using the shared
secret and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑 EKvec E

S
🔑CT1

58

The MLKEM Braid
Protocol

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start
sending it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending
EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!
they can start sending CT2.

● When Alex gets CT2 they
can start using the shared
secret and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

S
S
🗝

EKvec E
S
🔑

CT2

CT1

59

The MLKEM Braid
Protocol

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start
sending it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending
EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!
they can start sending CT2.

● When Alex gets CT2 they
can start using the shared
secret and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

S
S
🗝

EKvec E
S
🔑

CT2

CT1

60

The MLKEM Braid
Protocol

● Alex sends the seed first
● When Blake gets seed, they

sample CT1 and start
sending it.

● When Alex gets a chunk of
CT1 they can stop sending
seed and start sending
EKvec.

● Once Blake has all of EKvec
(and knows Alex has CT1!
they can start sending CT2.

● When Alex gets CT2 they
can start using the shared
secret and ACK Blake.

● When Blake gets the ACK,
they start using the shared
secret and swap roles.

header

Alex Blake

D
K
🔑

S
S
🗝

EKvec E
S
🔑

CT2

CT1

61

header

D
K🔑

S
S🗝

EKvec

E
S🔑 CT1

CT2

35x 1.6x
Using a 42B per-message bandwidth limit increases the size of a typical

small message by a factor of 1.6.

Still costly, but consistent and reasonable.

But we ratchet much more slowly.
62

SPQR
We call Secure Messaging with the MLKEM Braid the

Sparse Post Quantum Ratchet

63

Last step: Integrate
the PQ ratchet with
the classic ratchet
for hybrid security.

64

Secure Messaging
as a Black Box
To hybridize, think of the Double
Ratchet as a Secure Messaging
black box

● Init(secret)
● Send() → (msg, mkenc): get a

protocol message and an
encryption key, no input
needed.

● Recv(msg) → mkenc: Take a
protocol message and get a
decryption key.

Send() SM (msg,key)

SM Recv(msg)key

65

Secure Messaging
as a Black Box
To hybridize, think of the Double
Ratchet as a Secure Messaging
black box

● Init(secret)
● Send() → (msg, mkenc): get a

protocol message and an
encryption key, no input
needed.

● Recv(msg) → mkenc: Take a
protocol message and get a
decryption key.

Send() SM (msg,key)

SM Recv(msg)key

This is a protocol
message, e.g. a DH public
key with some metadata

66

Double
Ratchet SPQR

The Triple Ratchet
Compose to SM protocols by KDF-ing
the output keys together.

Combining the existing Double Ratchet
and the MLKEM Braid based Double
Ratchet we get hybrid DHMLWE PCS.

Bonus: changes to existing code are
minimal!

https://eprint.iacr.org/2025/078

SEND SEND

(msgQ, keyQ)(msgC, keyC)

kenc = KDF(keyC, keyQ)

ct = AE.enc(kenc, “hi”)

Send (msgC,msgQ,ct)

67

https://eprint.iacr.org/2025/078

All the names

68

Double
Ratchet ML-KEM Braid

SPQR

Triple Ratchet

Formal Verification

● Formal Verification was part of the process from the beginning.
● ProVerif was used to evaluate protocol candidates.
● Hax/F* used to verify Rust implementation is panic free

○ Also prove correctness of Galois field arithmetic
● Our CI pipeline runs the proofs on every push.
● Have a look: https://github.com/signalapp/SparsePostQuantumRatchet

Formal verification doesnʼt freeze your implementation. Itʼs an important part
of the dynamic development process.

with
69

https://github.com/signalapp/SparsePostQuantumRatchet

Triple Ratchet Impact, Risk, and Effort

Impact Development Effort and
Risk

Targeted.
Manageable risk.
Significant effort.

70

What this means for our users

Once the Triple Ratchet is fully deployed, Signal users will have Forward
Secrecy and Post Compromise Security even against quantum adversaries.

Once the session is established it is quantum safe - and still has all of the
ECDH-based security guarantees.

But about that session establishment…

71

A Fully Quantum Safe Protocol

72

We arenʼt there yet

Once the session is established, the Triple Ratchet provides full hybrid
security.

But PQXDH is trivially insecure against active quantum attacks: a quantum
attacker can compute the secret key for your Identity Key and impersonate
you.

We need post-quantum authentication in the handshake protocol…

…without breaking the other promises:

● DH Authentication
● DHMLWE Forward Secrecy
● “Deniabilityˮ

73

We have good options:
● Well studied protocols
● Nuanced understanding of

deniability
● Efficient 2Ring signatures

74

If we set out to
design a concrete
protocol now we are
likely to succeed.

75

Full Hybrid Protocol Impact, Risk, and Effort

76

Impact Development Effort and
Risk

Anticipated/widespread.

Moderate risk and effort.
Research will minimize

risk.

What this will mean for our users

Once we deploy a hybrid secure handshake, the updated Signal Protocol will
have full post-quantum security.

This is the root of all data security throughout our app and gives us a solid
foundation for the rest of our PQ transition.

We will be ready.

77

Stay tuned.

78

The Big
Picture ● The transition so far

● Looking forward

79

Our PQ Transition So Far

✅ PQXDH 2023 HNDL protection deployed

🐴 Workhorse crypto 2024∞ transitioning secure channels and more

🔄 Triple Ratchet 2025 Post-quantum PCS coming soon

We are prioritizing and progressing.

80

Looking Forward

📋 Full Hybrid Signal Protocol: Research phase

🐴 More workhorse crypto (much is blocked until we have PQ Identity)

🔬 Beyond 11

Sealed Sender

Group Messaging

Anonymous Credentials

We are just getting started.

81

Thank you!
rolfe@signal.org

82

Signal Protocol 1
Before PQXDH

IKA IKB

EKA {SPKB}

OPKB

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4)

X3DH

1. Perform 3 or 4 Elliptic Curve Diffie-Hellman
agreements DH1, DH2, DH3, DH4 .

2. Feed DH1, DH2, DH3, DH4 a into a Key
Derivation Function to attain a session secret
SK.

3. Use AEAD to encrypt an initial message with
Identity Keys as associated data:

AD = IKA || IKB
CTmsg = AEAD.Enc(SK, “hello ,ˮ AD)

4. Send along with info about what keys were
used:
msg = (CTmsg, EKA

PK, IKA, SPKB.id, OPKB.id)

The receiver can compute SK and decrypt CTmsg.

83

1. Perform 3 or 4 Elliptic Curve Diffie-Hellman
agreements DH1, DH2, DH3, DH4 .

2. Use a KEM Encapsulation Key to encapsulate a new
shared secret SS in CTKEM.

3. Feed DH1, DH2, DH3, DH4 and SS into a Key
Derivation Function to attain a session secret SK.

4. Use AEAD to encrypt an initial message with Identity
Keys as associated data:

AD = IKA || IKB
CTmsg = AEAD.Enc(SK, “hello ,ˮ AD)

5. Send along with info about what keys were used:
msg = (CTmsg, EKA

PK, IKA, CTKEM, SPKB.id, OPKB.id)

The receiver can compute SK and decrypt CTmsg.

Signal Protocol 1
PQXDH

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

PQXDH

84

