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> echo $STD_SGNL_RLVNT_SPIEL
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Signalʼs Mission and Vision

● Protect free expression and enable secure global communication 
through open source privacy technology.

● Make conversations with anyone in the world effortless, private, even 
joyful. 

● Privacy isnʼt an optional mode — itʼs how Signal works. Every message, 
every call, every time.

● We are an independent 501c3 nonprofit and will never compromise the 
mission. 

4



Signalʼs Mission and Vision

Our mission is NOT:

● Research
● Deploying fancy cryptography
● Developing general purpose open source software libraries
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But sometimes we 
need to do these 
things to get our 
work done.
also, they're fun
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Signalʼs Mission ⇒ Usability is Key
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“Effortlessˮ + “anyone in the worldˮ is hard.

● It constrains what we can deploy.
● It requires a large engineering effort.

But worth it.

Our focus on usability without compromising privacy is one key thing made 
Signal successful from the start.

Global usability is part of our mission.



PQ Transition ⊊ Ongoing Operations

To fulfill our mission we are always scanning for threats to our usersʼ 
privacy and prioritizing our limited resources to address them.

Some threats are immediate, others distant.

Some threats are large, others small.

Some are easy to address, others are complex, and for some we donʼt have 
solutions.

And some happen to be threats from quantum computing.
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Thinking About a Project 
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Impact Development Effort and Risk

Targeted Lower

Widespread Moderate

Anticipated High

Major cross-team deployment



We have to consider 
the potential impact 
of a threat vs the risk 
and effort of 
mitigating it.
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Now letʼs see how 
we are applying 
these principles to 
our post-quantum 
transition.
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Transitioning 
the Signal 
Protocol
A Case Study

● PQXDH 2023
● Triple Ratchet (soon!)
● Full Hybrid Security ?
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The Signal Protocol 2013
Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4) 

DH1 DH2

DH3

DH4
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These need post-quantum 
protection! 14



The Signal Protocol 2013
Two parts:

● X3DH handshake
● Double Ratchet for

continuous key agreement

Important security guarantees:

● Confidentiality
● Mutual authentication
● Post-compromise security
● Forward secrecy
● Deniability

Double RatchetX3DH

SK = KDF(DH1 || DH2 || DH3 || DH4) 

DH1 DH2

DH3

DH4

Symmetric Key crypto is already 
quantum safe. 15



The PQXDH Handshake
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K. Bhargavan, C. Jacomme, F. Kiefer and the Signal Team



X3DH and PQXDH The Problem

Flashback Spring 2023

Problem: An attacker that can compute curve25519 logarithms could 
compute X3DH session secrets and Double Ratchet updates, learning all 
session secrets.

Scope: All user messages and media were at risk to a HNDL attack.

But it wasnʼt 2013 NIST post-quantum standardization was pretty far along.
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X3DH PQXDH Adding Post-Quantum Security
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Classic X3DH

Alex Blake

IKA ↔ SPKB
EKA ↔ IKB

EKA ↔ SPKB
(* EKA ↔ OPKB *)

SK = KDF( DH1 || DH2 || DH3 
|| DH4)

100s of bytes
Handshake overhead



X3DH PQXDH Adding Post-Quantum Security
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→ (SS, CT)
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Classic X3DH
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EKA ↔ IKB
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SK = KDF( DH1 || DH2 || DH3 
|| DH4)

100s of bytes
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PQXDH

Alex Blake

IKA ↔ SPKB
EKA ↔ IKB

EKA ↔ SPKB
(* EKA ↔ OPKB *)

1000s of bytes
Handshake overhead

SK = KDF( DH1 || DH2 || DH3 
|| DH4 ||   SS  )

KEM.Encaps(PQPKB) 
→ (SS, CT)

Key Design Principles

● Minimal change: Add ONE 
post-quantum key/ciphertext

● PQ HNDL protection: A MAJOR gain
● No loss of ECDH security: Don’t 

remove effective security!
● Acceptable cost: Storage costs are 

significant, but worth it.

Classical
Quantum 
vulnerable

HNDL-Hybrid
Partially quantum 

resistant



Protocol Details Matter

21

There is a lot more to specifying a protocol than a nice picture.

Details matter, and formal verification - with ProVerif and CryptoVerif 
BJKS24 - was an important part of getting it right.

Protocol description: https://signal.org/docs/specifications/pqxdh/ 

BJKS24 https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan 

https://signal.org/docs/specifications/pqxdh/
https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan


PQXDH Impact, Risk, and Effort
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Impact Development Effort and 
Risk

Widespread. Doesn’t get much easier.



Few challenges.
Acceptable cost.
Huge impact.

This was an easy 
choice.
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What this means for our users

All Signal Protocol sessions started in our app today are just as secure as 
ever, but also enjoy post-quantum HNDL protection.

Even better - once the session is established, even an attacker with a 
quantum computer wonʼt be able to read the messages.

Unless they compromise one of the devices…
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The Ratchets

25

B. Auerbach, Y. Dodis, D. Jost, S. Katsumata, T. Prest, K. Bhargavan, F. Kiefer and 
the Signal Team



Double Ratchet: The Problem

Problem: Signal messages do not have post-quantum PCS. This matters 
today: a device compromise creates an HNDL opportunity.

Scope: Targeted.

What needs to change: The “Public Ratchetˮ of the Double Ratchet protocol 
needs post quantum security.
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Public Ratchet Basic Idea

Perform fresh key exchanges as you 
send and receive messages.

Use the fresh keys to update your 
session state.
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We call this 
Continuous Key 
Agreement CKA 
ECACD19
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The Diffie-Hellman Ratchet
CKA is easy with Diffie-Hellman key agreement:

  
    

    
    29

Alex Blake
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The Diffie-Hellman Ratchet
CKA is easy with Diffie-Hellman key agreement:

  
    

    
    

32B for curve25519
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Blake
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CKA is easy with Diffie-Hellman key agreement:

  
    

 
   

    

Alex Blake
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They Healed!



Thatʼs Post 
Compromise 
Security PCS.
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A Post Quantum Ratchet
CKA looks almost the same with a PQ KEM ECACD19

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)

ek2||ct1 (dk2,ek2) ← KEM.gen()

(k1, ct1) ← KEM.encaps(ek1)
k1 ← KEM.decaps(dk1, ct1)

ek3||ct2(dk3,ek3) ← KEM.gen()

(k2, ct2) ← KEM.encaps(ek2)
k2 ← KEM.decaps(dk2, ct2)
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A Post Quantum Ratchet
CKA looks almost the same with a PQ KEM ECACD19

ek1||ct0

dk0ek0

(dk1,ek1) ← KEM.gen()
(k0, ct0) ← KEM.encaps(ek0)

k0 ← KEM.decaps(dk0, ct0)
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(k1, ct1) ← KEM.encaps(ek1)
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ek3||ct2(dk3,ek3) ← KEM.gen()

(k2, ct2) ← KEM.encaps(ek2)
k2 ← KEM.decaps(dk2, ct2)
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Alex Blake

For ML-KEM 768 this is 
2272 bytes.



35x
Using MLKEM 768 like this would increase the size of a typical small 

message by a factor of 35.

This costs us and our users.

This affects usability for users with poor connections.
37



Two ways to reduce bandwidth
Amortize (like PQ3

● Donʼt send any messages for a long 
time.

● Then send a big message and repeat it 
until you get a response.

● Great in some situations, less great in 
others.

38
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Transmit in pieces

● Break a long message into smaller 
chunks.

● Send one chunk per message.
● Careful! 

○ Messages must get transmitted even if 
the chunks can be adversarially 
dropped!

○ Canʼt just send each chunk once.
○ Canʼt even send round-robin.



Chunking with Systematic) Erasure Codes
lo

ng
 m

es
sa

ge Encoder
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Chunking with Systematic) Erasure Codes
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Codewords are
● Fixed size
● Smaller than the initial 

message
● First N codewords 

concatenated are the initial 
message* 41
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Any N codewords can 
be used to decode!

Codewords are
● Fixed size
● Smaller than the initial 

message
● First N codewords 

concatenated are the initial 
message* 42



Secure Messaging 
with Sparse CKA
Now we can take any CKA and turn 
it into a “chunkedˮ protocol.

Note: It isnʼt a CKA anymore 
syntactically because it doesnʼt emit 
a new key every time it sends or 
receives a message.

So we define a “Sparse CKAˮ 
SCKA) and show how to construct 
secure Messaging from a Sparse 
CKA.

EK1 || CT0

Alex Blake

Still sending 
messages 

but nothing 
to do for 

this 
protocol…
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So weʼre done?
● Use MLKEM to instantiate the 

KEM-based CKA from 
ECACD19.

● Use our “chunking compilerˮ to 
turn it into an SCKA.

● Drop this into our SCKA-based 
Secure Messaging protocol to get 
messaging with MLWE-based 
security.

● Hybridize it with the classic 
double ratchet.
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No.

We can do 
better.
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The Problems
When we “chunkˮ the Standard KEM 
CKA protocol, there is always 
someone sitting quiet.

And look how long Alex and Blake 
have to hold onto their secrets. 😬.

Big attack surface, slow key 
emission.

Canʼt they do something?

EK1 || CT0

Alex Blake

D
K

1🔑
S

S
0🗝

D
K

0🔑

KEM Shared Secret 🗝

Decapsulation Key 🔑
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Ways to Do BetterTM:
1. Reduce the attack surface.
2. Blocked? Sample something and send!
3. Open the KEM black box.
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Open the KEM Black Box: 
Incremental KEM

An MLKEM Encapsulation key has two 
parts:

1. A 32B seed that gets expanded into a 
matrix A.

2. A “noisy vector ,ˮ As + e, where s is a 
decapsulation secret and e is small 
error.

An MLKEM Ciphertext has two parts:

1. A “compressed noisy vector ,ˮ ATsʼ + 
eʼ, where sʼ is a decapsulation secret 
and eʼ is small error.

2. A “reconciliation messageˮ

seed
(32 B)

EKvec
noisy vector

(1152 B)

M
L-

K
E

M
 7

68
 E

nc
ap

su
la

tio
n 

K
ey

CT1
compressed

noisy
vector
(960B)

CT2
Reconciliation

(128 B)

M
L-

K
E

M
 7

68
 C

ip
he

rte
xt
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Idea: Now we can 
sample CT1 early and 
send it in parallel 
with EK.
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The MLKEM Braid 
Protocol

● Alex sends the seed first
● When Blake gets seed, they 

sample CT1 and start 
sending it.

● When Alex gets a chunk of 
CT1 they can stop sending 
seed and start sending 
EKvec.

● Once Blake has all of EKvec 
(and knows Alex has CT1! 
they can start sending CT2.

● When Alex gets CT2 they 
can start using the shared 
secret and ACK Blake.

● When Blake gets the ACK, 
they start using the shared 
secret and swap roles.

header

Alex Blake

D
K
🔑
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35x 1.6x
Using a 42B per-message bandwidth limit increases the size of a typical 

small message by a factor of 1.6.

Still costly, but consistent and reasonable.

But we ratchet much more slowly.
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SPQR
We call Secure Messaging with the MLKEM Braid the 

Sparse Post Quantum Ratchet
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Last step: Integrate 
the PQ ratchet with 
the classic ratchet 
for hybrid security.
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Secure Messaging 
as a Black Box
To hybridize, think of the Double 
Ratchet as a Secure Messaging 
black box

● Init(secret)
● Send() → (msg, mkenc): get a 

protocol message and an 
encryption key, no input 
needed.

● Recv(msg) → mkenc: Take a 
protocol message and get a 
decryption key.

Send() SM (msg,key)

SM Recv(msg)key
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Secure Messaging 
as a Black Box
To hybridize, think of the Double 
Ratchet as a Secure Messaging 
black box

● Init(secret)
● Send() → (msg, mkenc): get a 

protocol message and an 
encryption key, no input 
needed.

● Recv(msg) → mkenc: Take a 
protocol message and get a 
decryption key.

Send() SM (msg,key)

SM Recv(msg)key

This is a protocol 
message, e.g. a DH public 
key with some metadata
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Double 
Ratchet SPQR

The Triple Ratchet
Compose to SM protocols by KDF-ing 
the output keys together.

Combining the existing Double Ratchet 
and the MLKEM Braid based Double 
Ratchet we get hybrid DHMLWE PCS.

Bonus: changes to existing code are 
minimal!

https://eprint.iacr.org/2025/078 

SEND SEND

(msgQ, keyQ)(msgC, keyC)

kenc = KDF(keyC, keyQ)

ct = AE.enc(kenc, “hi”)

Send (msgC,msgQ,ct)

67
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All the names

68

Double 
Ratchet ML-KEM Braid

SPQR

Triple Ratchet



Formal Verification

● Formal Verification was part of the process from the beginning.
● ProVerif was used to evaluate protocol candidates.
● Hax/F* used to verify Rust implementation is panic free

○ Also prove correctness of Galois field arithmetic
● Our CI pipeline runs the proofs on every push.
● Have a look: https://github.com/signalapp/SparsePostQuantumRatchet 

Formal verification doesnʼt freeze your implementation. Itʼs an important part 
of the dynamic development process.

with
69

https://github.com/signalapp/SparsePostQuantumRatchet


Triple Ratchet Impact, Risk, and Effort

Impact Development Effort and 
Risk

Targeted.
Manageable risk.
Significant effort.
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What this means for our users

Once the Triple Ratchet is fully deployed, Signal users will have Forward 
Secrecy and Post Compromise Security even against quantum adversaries.

Once the session is established it is quantum safe - and still has all of the 
ECDH-based security guarantees.

But about that session establishment…

71



A Fully Quantum Safe Protocol
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We arenʼt there yet

Once the session is established, the Triple Ratchet provides full hybrid 
security.

But PQXDH is trivially insecure against active quantum attacks: a quantum 
attacker can compute the secret key for your Identity Key and impersonate 
you.

We need post-quantum authentication in the handshake protocol…

…without breaking the other promises:

● DH Authentication
● DHMLWE Forward Secrecy
● “Deniabilityˮ
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We have good options:
● Well studied protocols
● Nuanced understanding of 

deniability
● Efficient 2Ring signatures
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If we set out to 
design a concrete 
protocol now we are 
likely to succeed.
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Full Hybrid Protocol Impact, Risk, and Effort

76

Impact Development Effort and 
Risk

Anticipated/widespread.

Moderate risk and effort. 
Research will minimize 

risk.



What this will mean for our users

Once we deploy a hybrid secure handshake, the updated Signal Protocol will 
have full post-quantum security.

This is the root of all data security throughout our app and gives us a solid 
foundation for the rest of our PQ transition.

We will be ready.
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Stay tuned.
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The Big 
Picture ● The transition so far

● Looking forward
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Our PQ Transition So Far

✅ PQXDH 2023 HNDL protection deployed

🐴 Workhorse crypto 2024∞ transitioning secure channels and more

🔄 Triple Ratchet 2025 Post-quantum PCS coming soon 

We are prioritizing and progressing.
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Looking Forward

📋 Full Hybrid Signal Protocol: Research phase 

🐴 More workhorse crypto (much is blocked until we have PQ Identity)

🔬 Beyond 11 

Sealed Sender 

Group Messaging 

Anonymous Credentials

We are just getting started.
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Thank you!
rolfe@signal.org
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Signal Protocol 1 
Before PQXDH

IKA IKB

EKA {SPKB}

OPKB

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4)

X3DH

1. Perform 3 or 4 Elliptic Curve Diffie-Hellman 
agreements DH1, DH2, DH3, DH4 .

2. Feed  DH1, DH2, DH3, DH4 a into a Key 
Derivation Function to attain a session secret 
SK.

3. Use AEAD to encrypt an initial message with 
Identity Keys as associated data:

AD = IKA || IKB
CTmsg = AEAD.Enc(SK, “hello ,ˮ AD)

4. Send along with info about what keys were 
used:
msg = (CTmsg, EKA

PK, IKA, SPKB.id, OPKB.id )

The receiver can compute SK and decrypt CTmsg.
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1. Perform 3 or 4 Elliptic Curve Diffie-Hellman 
agreements DH1, DH2, DH3, DH4 .

2. Use a KEM Encapsulation Key to encapsulate a new 
shared secret SS in CTKEM.

3. Feed  DH1, DH2, DH3, DH4 and SS  into a Key 
Derivation Function to attain a session secret SK.

4. Use AEAD to encrypt an initial message with Identity 
Keys as associated data:

AD = IKA || IKB
CTmsg = AEAD.Enc(SK, “hello ,ˮ AD)

5. Send along with info about what keys were used:
msg = (CTmsg, EKA

PK, IKA, CTKEM, SPKB.id, OPKB.id )

The receiver can compute SK and decrypt CTmsg.

Signal Protocol 1 
PQXDH

IKA IKB

EKA {SPKB}

OPKB

{PQPKB}(SS, CTKEM)

DH1 DH2

DH3

DH4

SK = KDF(DH1॥ DH2॥ DH3॥ DH4॥ SS)

PQXDH
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