Public Key Linting for ML-KEM and ML-DSA

Evangelos Karatsiolis' ~ Franziskus Kiefer’ Juliane Kramer® Mirjam Loiero!
Christian Tobias® Maximiliane Weishzupl®

SPIQE, 24 June 2025
IMTG
2Cryspen

3Universitat Regensburg

Motivation

Incident Dashboard

[[’]] Page Discussion

mozilla wiki
CA/Incident Dashboard = certification authorities (CA) issue

Main page <CA s a . .
e S certificates used to verify the identity
New pages ummas N N s e it
Recent changes Asseco DS .'ScEm.mwnNs senvice ° - Of entities
Recent uploads ED 1958645 ASSIGNED .) . .
Random page = crucial for security and functioning
Help Cenalr.\\y. Sample Websites 1068836 ASSIGNED

ol of protocols like TLS, S/MIME
How to Contribute Certigna: Multiple Reserved ! T
Albhands meeting Cerlificate Policy Identifiersin CA 1953663 | ASSIGNED = essential to establish trust among
Other meetings Caitiicates
Contribute to Mozilla certSIGN: Findings in 2025 ETSI users
Community Portal Audit - Audit Incident Report #1 — 1985804 ASSIGNED
Gommunity Participation Improve clarity in CPS .]
Guideines erSIGN Fiings n 2025 ETSH = several requirements regarding
Mozillawiki Audit - Audit Incident Report #2 — 1965805 ASSIGNED .) .

Add test certificates in CPS
:hou(certSIGN: Findings in 2025 ETSI Ce rt I fl Cat Ion eXI St
Policles ::::4;:::;:::‘:;::?;&;m 1965806 | ASSIGNED — failin g to com P |y with them leads
Reporta wiki bug Conditions

certSIGN: Findings in 2025 ETSI to incidents
) Audit - Audit ncident Report#d =
Mezilla Support Expired cert with bad order of

attributes

Around Mozilla

certSIGN: Findings in 2025 ETSI
Audit - Audit Incident Report #5 — 1985808 ASSIGNED 1

Incident Dashboard

GlobalSign: Non-BR-Compliant
Certificate Issuance -- RSA key 1393557 RESOLVED

smaller than 2048 bits

Sectigo: Certificates with RSA keys
where modulus is not divisible by 8

1653504 | RESOLVED

GDCA: Misissuance of certificates
with small RSA keys

1467414 RESOLVED

incidents harm a CA's reputation and
more generally public key
infrastructures

many incidents are related to the
content of a certificate

can be avoided, if proper mechanisms

are in place

= linting: process of analyzing the content of a certificate w.r.t. predefined rules (“lints”)

= examples for RSA lints:

the length of the modulus is one of the specified values in FIPS 186-3
the modulus and the public exponent are odd numbers

the modulus is not a power of a prime

the modulus has no factors smaller than 752

Lint Example

Lint: The modulus has no factors smaller than 752

Check that ged(n, r) = 1 where

r =1451887755777639901511587432083070202422614380984889313550570919
6593151770659565743590789126541491676439926842369913057775743308
3166651158914570105971074227669275788291575622090199821297575654
3223550490431013061082131040808010565293748926901442915057819663
730454818359472391642885328171302299245556663073719855 ,

is the product of the 132 primes from 3 to 751.

Linting Process

‘

i
1 Send public key

certificate and notifies the key owner oo
| Observe certificate

| and identity 3 3 3

D |_Perform identity validation i |

1 < 1 1

= CA creates temporary certificate and 3 Gt emporey cortfste | 3
starts the linting process 3 Linttemporary cerfeate 3 3
5P :) : :

= certificate is checked for each lint in at /' lintingfaec] | B] !
' ! Discard certificate ' '

the linting library } <~ 3 3

1 Notify | |

= if one lint fails, the entire linting fining sccesde] . ! |
submit ' D

process fails — the CA discards the sond signed certfcate tmestamp | :

= otherwise: certificate is sent to a

e
Issue real certificate 3
certificate transparency log server, Sond cortifcato
finalized, and issued | ortifcateuss)
' ! Use certificate
! P

Current State of Linting Regulations

Ballot SC-75 of CA/Browser Forum...
= ...renders pre-sign linting mandatory from March 2025

= __states that validating the key material is a responsibility of the CA

Currently: these requirements cover RSA and elliptic curve keys

Linting Post-Quantum Schemes

= advancing standardization of post-quantum cryptographic (PQC) schemes:

= finalized standards: ML-KEM, ML-DSA, SLH-DSA
= also selected for standardization: Falcon, HQC
= ongoing NIST process for additional digital signature schemes

= need for preparing the IT security infrastructure for integrating post-quantum schemes

= linting has not been studied for PQC schemes!

Goal: initiate the study of linting for PQC schemes by analyzing the public keys
of ML-KEM and ML-DSA

Background: ML-KEM

ML-KEM: General Information

NIST standard for key-encapsulation mechanisms (KEM) using module lattices
= based on the KEM CRYSTALS-Kyber

= high-level construction:

public-key encryption scheme: K-PKE ~2-"2fom, i eng ML-KEM
= distinction between external and internal components:

= external: generate randomness, check whether randomness generation was successful, and
call their internal counterparts

= |internal: actual steps of the procedures [« here the public key is used!

ML-KEM: Key Generation

Algorithm ML-KEM.KeyGen_internal(d, z)

Input randomness d, z € B3?

Output ek €]B§384k+32, dk € [B768k+96

1: (ekaE, dkaE) — K—PKE.KeyGen(d)
2: ek + ekpkg

3: dk + (dkpke|lek||H(ek)]||z)

4: return (ek, dk)

ML-KEM: Key Generation of the underlying PKE

Algorithm K-PKE.KeyGen(d) Algorithm K-PKE.KeyGen(d)
Input: randomness d € B2 12: for (i < 0;i < k; i++) do
Output: ekpie € B3#* 32 dkpye € B384 13: e[i] - SamplePolyCBD,, (PRF,, (o, N))
1: | (p,0) < G(d||k) 14: N<+—N+1
22 N0 15: end for
3: for (i< 0;i < k; i++) do 16: 5« NTT(s)
4: for (j <+ 0,/ < k;j++) do 17: @< NTT(e)
Ali, j] « SampleNTT(p]lj|7) 18: |t Aos+ 2

end for

19: | ekpke < ByteEncode;,(t)]|p
20: dkpke < ByteEncode;,(3)
21: return (ekaE, dkaE)

: for (i« 0;i < k;i++) do
s[i] <~ SamplePolyCBD,, (PRF,;, (o, N))
10: N+ N+1
11: end for

5
6
7: end for
8
9

10

Methodology

Finding Lints

= consider properties of the certificate and the public key itself

= check whether all rules from the standards are fulfilled and if the properties of an honestly

generated key are given

= take into account the input validation checks described in the standards

11

Lint Classes

We introduce 5 lint classes:
= INTER: interoperability lints focus on certificate properties which assist applications in
properly communicating with each other
= DIM: dimension lints test whether the size of certain objects is correct
= DOM: domain lints test whether the “type” of the objects is correct
= DIS: distribution lints verify distribution properties of objects

= GEN: lints that work generically for any scheme

12

Completeness of Lints

lint classes: new ones might need to be introduced for future lints!

= dimension and domain lints: complete

distribution lints: incomplete

= interoperability and generic lints: incomplete

— only starting point for post-quantum linting

— more lints can be added over time using our proposed formal description

13

Application Lints

= applications (e.g., email client, browser) extract the pk from the certificate in order to use it

= in the case of ML-KEM and ML-DSA, the application must perform further operations, like
expanding the key
— the expanded pk depends on the implementation of the expanding algorithm used by
the application
— lints for the expanded pk must be performed at the application side (if at all)

14

Implementation

= our lints are implemented in Java and Rust

= lints which examine properties of the certificate — Java (using methods provided by
BouncyCastle)
= lints that check the correctness of the key within the certificate — Rust

= Rust allows us to enforce the size of inputs on the type level, such that dimension lints get
covered by the API

= we give test vectors for keys with and without errors

15

ML-KEM Lints

Lint Classification Identifier
key usage interoperability INTER_01
pk aid enc interoperability INTER_02
ek length dimension DIM_01
ek seed length dimension DIM_02
ek matrix dimension dimension DIM_03
ek vector dimension dimension DIM_04
ek matrix entries domain DOM_01
ek vector entries domain DOM_02
ek seed entry frequency distribution DIS_01
ek seed entry run distribution DIS_02
ek seed small/large entries distribution DIS_03
ek matrix entry frequency distribution DIS_04
ek matrix entry run distribution DIS_05
ek matrix small/large entries distribution DIS_06
known enc key generic GEN_01

ek encoding generic GEN_02 16

Example: Interoperability Lint

ML_KEM_INTER_01

= concerns the key usage extension in a certificate, which specifies for which types of use the
certificate’s public key can be used

= lint checks that the value of the key usage extension is compatible with the ML-KEM
algorithm

= only values related to key encryption are compatible

17

Example: Dimension Lint

ML_KEM_DIM_01

= based on one of the tests for input validation described in the ML-KEM standard
= lint checks the length of the encoded encapsulation key ek

= the correct length is 384k + 32 bytes for k € {2,3,4} depending on the ML-KEM
parameter set

18

Example: Distribution Lint

ML_KEM_DIS_01

= checks if the seed p contains the same element an amount of times that is unlikely for a
pseudorandomly sampled value from B32

= outputs an error if there are at least x = 20 occurrences of the same byte

19

Conclusion

Conclusion

= we initiate the study of PQC linting and provide a framework
= challenges:
= for PQC schemes, security is often related to certain elements “looking random™ or following
a pre-defined distribution
= usage of seeds in ML-KEM and ML-DSA: properties of the expanded public key cannot be
checked by the CA (depends on the implementation of the expansion algorithm)
— testing of the implementations is necessary

= only a starting point: linting is very scheme-specific!

20

	Motivation
	Background: ML-KEM
	Methodology
	ML-KEM Lints
	Conclusion

