
Public Key Linting for ML-KEM and ML-DSA

Evangelos Karatsiolis1 Franziskus Kiefer2 Juliane Krämer3 Mirjam Loiero1

Christian Tobias1 Maximiliane Weishäupl3

SPIQE, 24 June 2025
1MTG

2Cryspen

3Universität Regensburg

Motivation

Incident Dashboard

• certification authorities (CA) issue
certificates used to verify the identity
of entities

• crucial for security and functioning
of protocols like TLS, S/MIME, . . .

• essential to establish trust among
users

• several requirements regarding
certification exist
→ failing to comply with them leads

to incidents

1

Incident Dashboard

• incidents harm a CA’s reputation and
more generally public key
infrastructures

• many incidents are related to the
content of a certificate

• can be avoided, if proper mechanisms
are in place

2

Linting

• linting: process of analyzing the content of a certificate w.r.t. predefined rules (“lints”)
• examples for RSA lints:

• the length of the modulus is one of the specified values in FIPS 186-3
• the modulus and the public exponent are odd numbers
• the modulus is not a power of a prime
• the modulus has no factors smaller than 752

3

Lint Example

Lint: The modulus has no factors smaller than 752

Check that gcd(n, r) = 1 where

r =1451887755777639901511587432083070202422614380984889313550570919
6593151770659565743590789126541491676439926842369913057775743308
3166651158914570105971074227669275788291575622090199821297575654
3223550490431013061082131040808010565293748926901442915057819663
730454818359472391642885328171302299245556663073719855 ,

is the product of the 132 primes from 3 to 751.

4

Linting Process

• CA creates temporary certificate and
starts the linting process

• certificate is checked for each lint in
the linting library

• if one lint fails, the entire linting
process fails → the CA discards the
certificate and notifies the key owner

• otherwise: certificate is sent to a
certificate transparency log server,
finalized, and issued

5

Current State of Linting Regulations

Ballot SC-75 of CA/Browser Forum...
• ...renders pre-sign linting mandatory from March 2025
• ...states that validating the key material is a responsibility of the CA

Currently: these requirements cover RSA and elliptic curve keys

6

Linting Post-Quantum Schemes

• advancing standardization of post-quantum cryptographic (PQC) schemes:
• finalized standards: ML-KEM, ML-DSA, SLH-DSA
• also selected for standardization: Falcon, HQC
• ongoing NIST process for additional digital signature schemes

• need for preparing the IT security infrastructure for integrating post-quantum schemes
• linting has not been studied for PQC schemes!

Goal: initiate the study of linting for PQC schemes by analyzing the public keys
of ML-KEM and ML-DSA

7

Background: ML-KEM

ML-KEM: General Information

• NIST standard for key-encapsulation mechanisms (KEM) using module lattices
• based on the KEM CRYSTALS-Kyber
• high-level construction:

public-key encryption scheme: K-PKE FO-transform−−−−−−−→ KEM: ML-KEM

• distinction between external and internal components:
• external: generate randomness, check whether randomness generation was successful, and

call their internal counterparts
• internal: actual steps of the procedures ← here the public key is used!

8

ML-KEM: Key Generation

Algorithm ML-KEM.KeyGen_internal(d , z)

Input randomness d , z ∈ B32

Output ek ∈ B384k+32, dk ∈ B768k+96

1: (ekPKE, dkPKE)← K-PKE.KeyGen(d)
2: ek ← ekPKE

3: dk ← (dkPKE∥ek∥H(ek)∥z)
4: return (ek, dk)

9

ML-KEM: Key Generation of the underlying PKE

Algorithm K-PKE.KeyGen(d)

Input: randomness d ∈ B32

Output: ekPKE ∈ B384k+32, dkPKE ∈ B384k

1: (ρ, σ)← G(d ||k)
2: N ← 0
3: for (i ← 0; i < k; i++) do
4: for (j ← 0; j < k; j++) do
5: Â[i , j]← SampleNTT(ρ||j ||i)
6: end for
7: end for
8: for (i ← 0; i < k; i++) do
9: s[i]← SamplePolyCBDη1(PRFη1(σ, N))

10: N ← N + 1
11: end for

Algorithm K-PKE.KeyGen(d)

12: for (i ← 0; i < k; i++) do
13: e[i]← SamplePolyCBDη1(PRFη1(σ, N))
14: N ← N + 1
15: end for
16: ŝ ← NTT(s)
17: ê ← NTT(e)
18: t̂ ← Â ◦ ŝ + ê

19: ekPKE ← ByteEncode12(t̂)∥ρ
20: dkPKE ← ByteEncode12(ŝ)
21: return (ekPKE, dkPKE)

10

Methodology

Finding Lints

• consider properties of the certificate and the public key itself
• check whether all rules from the standards are fulfilled and if the properties of an honestly

generated key are given
• take into account the input validation checks described in the standards

11

Lint Classes

We introduce 5 lint classes:

• INTER: interoperability lints focus on certificate properties which assist applications in
properly communicating with each other

• DIM: dimension lints test whether the size of certain objects is correct
• DOM: domain lints test whether the “type” of the objects is correct
• DIS: distribution lints verify distribution properties of objects
• GEN: lints that work generically for any scheme

12

Completeness of Lints

• lint classes: new ones might need to be introduced for future lints!
• dimension and domain lints: complete
• distribution lints: incomplete
• interoperability and generic lints: incomplete

→ only starting point for post-quantum linting
→ more lints can be added over time using our proposed formal description

13

Application Lints

• applications (e.g., email client, browser) extract the pk from the certificate in order to use it
• in the case of ML-KEM and ML-DSA, the application must perform further operations, like

expanding the key
→ the expanded pk depends on the implementation of the expanding algorithm used by

the application
→ lints for the expanded pk must be performed at the application side (if at all)

14

Implementation

• our lints are implemented in Java and Rust
• lints which examine properties of the certificate → Java (using methods provided by

BouncyCastle)
• lints that check the correctness of the key within the certificate → Rust

• Rust allows us to enforce the size of inputs on the type level, such that dimension lints get
covered by the API

• we give test vectors for keys with and without errors

15

ML-KEM Lints

Overview

Lint Classification Identifier

key usage interoperability INTER_01
pk aid enc interoperability INTER_02

ek length dimension DIM_01
ek seed length dimension DIM_02
ek matrix dimension dimension DIM_03
ek vector dimension dimension DIM_04

ek matrix entries domain DOM_01
ek vector entries domain DOM_02

ek seed entry frequency distribution DIS_01
ek seed entry run distribution DIS_02
ek seed small/large entries distribution DIS_03
ek matrix entry frequency distribution DIS_04
ek matrix entry run distribution DIS_05
ek matrix small/large entries distribution DIS_06

known enc key generic GEN_01
ek encoding generic GEN_02 16

Example: Interoperability Lint

ML_KEM_INTER_01

• concerns the key usage extension in a certificate, which specifies for which types of use the
certificate’s public key can be used

• lint checks that the value of the key usage extension is compatible with the ML-KEM
algorithm

• only values related to key encryption are compatible

17

Example: Dimension Lint

ML_KEM_DIM_01

• based on one of the tests for input validation described in the ML-KEM standard
• lint checks the length of the encoded encapsulation key ek
• the correct length is 384k + 32 bytes for k ∈ {2, 3, 4} depending on the ML-KEM

parameter set

18

Example: Distribution Lint

ML_KEM_DIS_01

• checks if the seed ρ contains the same element an amount of times that is unlikely for a
pseudorandomly sampled value from B32

• outputs an error if there are at least x = 20 occurrences of the same byte

19

Conclusion

Conclusion

• we initiate the study of PQC linting and provide a framework
• challenges:

• for PQC schemes, security is often related to certain elements “looking random” or following
a pre-defined distribution

• usage of seeds in ML-KEM and ML-DSA: properties of the expanded public key cannot be
checked by the CA (depends on the implementation of the expansion algorithm)
→ testing of the implementations is necessary

• only a starting point: linting is very scheme-specific!

20

	Motivation
	Background: ML-KEM
	Methodology
	ML-KEM Lints
	Conclusion

